skip to main content


Search for: All records

Creators/Authors contains: "Gädeke, Anne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Arctic ecosystems are particularly vulnerable to climate change because of Arctic amplification. Here, we assessed the climatic impacts of low-end, 1.5 °C, and 2.0 °C global temperature increases above pre-industrial levels, on the warming of terrestrial ecosystems in northern high latitudes (NHL, above 60 °N including pan-Arctic tundra and boreal forests) under the framework of the Inter-Sectoral Impact Model Intercomparison Project phase 2b protocol. We analyzed the simulated changes of net primary productivity, vegetation biomass, and soil carbon stocks of eight ecosystem models that were forced by the projections of four global climate models and two atmospheric greenhouse gas pathways (RCP2.6 and RCP6.0). Our results showed that considerable impacts on ecosystem carbon budgets, particularly primary productivity and vegetation biomass, are very likely to occur in the NHL areas. The models agreed on increases in primary productivity and biomass accumulation, despite considerable inter-model and inter-scenario differences in the magnitudes of the responses. The inter-model variability highlighted the inadequacies of the present models, which fail to consider important components such as permafrost and wildfire. The simulated impacts were attributable primarily to the rapid temperature increases in the NHL and the greater sensitivity of northern vegetation to warming, which contrasted with the less pronounced responses of soil carbon stocks. The simulated increases of vegetation biomass by 30–60 Pg C in this century have implications for climate policy such as the Paris Agreement. Comparison between the results at two warming levels showed the effectiveness of emission reductions in ameliorating the impacts and revealed unavoidable impacts for which adaptation options are urgently needed in the NHL ecosystems.

     
    more » « less
  3. Abstract. Global water models (GWMs) simulate the terrestrial watercycle on the global scale and are used to assess the impacts of climatechange on freshwater systems. GWMs are developed within different modellingframeworks and consider different underlying hydrological processes, leadingto varied model structures. Furthermore, the equations used to describevarious processes take different forms and are generally accessible onlyfrom within the individual model codes. These factors have hindered aholistic and detailed understanding of how different models operate, yetsuch an understanding is crucial for explaining the results of modelevaluation studies, understanding inter-model differences in theirsimulations, and identifying areas for future model development. This studyprovides a comprehensive overview of how 16 state-of-the-art GWMs aredesigned. We analyse water storage compartments, water flows, and humanwater use sectors included in models that provide simulations for theInter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). Wedevelop a standard writing style for the model equations to enhance modelintercomparison, improvement, and communication. In this study, WaterGAP2used the highest number of water storage compartments, 11, and CWatM used 10compartments. Six models used six compartments, while four models (DBH,JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments.WaterGAP2 simulates five human water use sectors, while four models (CLM4.5,CLM5.0, LPJmL, and MPI-HM) simulate only water for the irrigation sector. Weconclude that, even though hydrological processes are often based on similarequations for various processes, in the end these equations have beenadjusted or models have used different values for specific parameters orspecific variables. The similarities and differences found among the modelsanalysed in this study are expected to enable us to reduce the uncertaintyin multi-model ensembles, improve existing hydrological processes, andintegrate new processes. 
    more » « less
  4. Abstract

    On the Arctic Coastal Plain (ACP) in northern Alaska (USA), permafrost and abundant surface‐water storage define watershed hydrological processes. In the last decades, the ACP landscape experienced extreme climate events and increased lake water withdrawal (LWW) for infrastructure construction, primarily ice roads and industrial operations. However, their potential (combined) effects on streamflow are relatively underexplored. Here, we applied the process‐based, spatially distributed hydrological and thermal Water Balance Simulation Model (10 m spatial resolution) to the 30 km2Crea Creek watershed located on the ACP. The impacts of documented seasonal climate extremes and LWW were evaluated on seasonal runoff (May–August), including minimum 7‐day mean flow (MQ7), the recovery time of MQ7 to pre‐perturbation conditions, and the duration of streamflow conditions that prevents fish passage. Low‐rainfall scenarios (21% of normal, one to three summers in a row) caused a larger reduction in MQ7 (−56% to −69%) than LWW alone (−44% to −58%). Decadal‐long consecutive LWW under average climate conditions resulted in a new equilibrium in low flow and seasonal runoff after 3 years that included a disconnected stream network, a reduced watershed contributing area (54% of total watershed area), and limited fish passage of 20 days (vs. 6 days under control conditions) throughout summer. Our results highlight that, even under current average climatic conditions, LWW is not offset by same‐year snowmelt as currently assumed in land management regulations. Effective land management would therefore benefit from considering the combined impact of climate change and industrial LWWs.

     
    more » « less
  5. Abstract

    The terrestrial carbon sink provides a critical negative feedback to climate warming, yet large uncertainty exists on its long‐term dynamics. Here we combined terrestrial biosphere models (TBMs) and climate projections, together with climate‐specific land use change, to investigate both the trend and interannual variability (IAV) of the terrestrial carbon sink from 1986 to 2099 under two representative concentration pathways RCP2.6 and RCP6.0. The results reveal a saturation of the terrestrial carbon sink by the end of this century under RCP6.0 due to warming and declined CO2effects. Compared to 1986–2005 (0.96 ± 0.44 Pg C yr−1), during 2080–2099 the terrestrial carbon sink would decrease to 0.60 ± 0.71 Pg C yr−1but increase to 3.36 ± 0.77 Pg C yr−1, respectively, under RCP2.6 and RCP6.0. The carbon sink caused by CO2, land use change and climate change during 2080–2099 is −0.08 ± 0.11 Pg C yr−1, 0.44 ± 0.05 Pg C yr−1, and 0.24 ± 0.70 Pg C yr−1under RCP2.6, and 4.61 ± 0.17 Pg C yr−1, 0.22 ± 0.07 Pg C yr−1, and ‐1.47 ± 0.72 Pg C yr−1under RCP6.0. In addition, the carbon sink IAV shows stronger variance under RCP6.0 than RCP2.6. Under RCP2.6, temperature shows higher correlation with the carbon sink IAV than precipitation in most time, which however is the opposite under RCP6.0. These results suggest that the role of terrestrial carbon sink in curbing climate warming would be weakened in a no‐mitigation world in future, and active mitigation efforts are required as assumed under RCP2.6.

     
    more » « less